Biography
The Tang lab focuses on translating knowledge on mechanisms of immune tolerance into novel therapeutics for treating autoimmune diabetes and preventing transplant rejection. Currently, two major areas of work are on therapeutic application of regulatory T cell therapy in type 1 diabetes and transplantation and immune modulation to enable immune suppression-free transplant of stem-cell-derived beta cells for treatment of type 1 diabetes.
Regulatory T cells are a small population of white blood cells that are essential for preventing tissue damages caused by over activation of the immune system. The Tang lab has shown that infusion of regulatory T cells in animal models can reverse type 1 diabetes, a disease caused by immune destruction of insulin-producing cells in the pancreatic islets. Similarly, regulatory T cell therapy can prevent rejection of transplanted organs in animal models. A joint team of researchers from the Tang and Bluestone labs is currently conducting 6 clinical trials evaluating the safety and efficacy of regulatory T cell therapy in patients. In the mean time, we are developing next generation regulatory T cell therapies in preclinical models to improve the safety and efficacy of the therapy.
In patients with chronic type 1 diabetes, transplanting of stem-cell-derived beta cells can potentially cure the disease, but patients have to commit to life-long immunosuppression to prevent rejection of the transplanted cells from rejection by the immune system. The Tang lab is currently investigating approaches to shield the transplanted cells from the immune systems using novel biomaterials developed in the Desai and Roy labs at UCSF. We are also applying genome-editing technologies to immunoengineer stem cells to evade immune rejection.
Regulatory T cells are a small population of white blood cells that are essential for preventing tissue damages caused by over activation of the immune system. The Tang lab has shown that infusion of regulatory T cells in animal models can reverse type 1 diabetes, a disease caused by immune destruction of insulin-producing cells in the pancreatic islets. Similarly, regulatory T cell therapy can prevent rejection of transplanted organs in animal models. A joint team of researchers from the Tang and Bluestone labs is currently conducting 6 clinical trials evaluating the safety and efficacy of regulatory T cell therapy in patients. In the mean time, we are developing next generation regulatory T cell therapies in preclinical models to improve the safety and efficacy of the therapy.
In patients with chronic type 1 diabetes, transplanting of stem-cell-derived beta cells can potentially cure the disease, but patients have to commit to life-long immunosuppression to prevent rejection of the transplanted cells from rejection by the immune system. The Tang lab is currently investigating approaches to shield the transplanted cells from the immune systems using novel biomaterials developed in the Desai and Roy labs at UCSF. We are also applying genome-editing technologies to immunoengineer stem cells to evade immune rejection.
Education
Institution | Degree | Dept or School | End Date |
---|---|---|---|
University of California | Diversity, Equity, and Inclusion Champion Training | 2021 | |
University of California | Postdoctoral Studies | Immunology | 2002 |
Univeristy of Chicago | Postdoctoral Studies | Immunology | 2000 |
University of Illinios | PhD | Microbiology and Immunology | 1996 |
University of South Alabama | Graduate School | Microbiology and Immunology | 1991 |
Peking Union Medical College | Medical School | Medcine | 1989 |
Clinical Trials
- Related Conditions: Liver Transplant| Start Date: | End Date:
- Related Conditions: Liver Transplant| Start Date: | End Date:
In the News
Grants and Funding
- iSTAR Tregs | NIH | 2023-07-01 - 2027-06-30 | Role: Principal Investigator
- Genome editing of human pancreatic islets to withstand ischemic injuries and promote immune evasion | NIH | 2022-07-01 - 2027-04-30 | Role: Principal Investigator
- Stem cell-based modeling of type 1 diabetes to accelerate translation of therapies | NIH | 2025-01-01 - 2026-12-31 | Role: Co-Investigator
- Pancreatic Islets and Parathyroid Gland Co-transplantation for Treatment of Diabetes in the Intra-Muscular Site: PARADIGM | CIRM | 2019-07-01 - 2023-06-30 | Role: Co-investigator
- Islet transplant operational tolerance through minimization of ischemic injury and local immune regulation | JDRF | 2019-09-01 - 2021-08-31 | Role: PI
- Novel Therapies to Modulate the Inflammatory Alloresponse in Renal Grafts | NIAID | 2014-07-01 - 2021-06-30 | Role: Co-investigator
- Donor-Alloantigen-Reactive Regulatory T Cell Therapy in Liver Transplantation | NIH | 2014-06-01 - 2021-05-31 | Role: Co-Principal Investigator
- Diabetes Research Center | NIH | 2002-09-01 - 2021-03-31 | Role: Co-Investigator
- Engineering Treg cells to treat type 1 diabetes | Helmsley Charitable Trust | 2017-11-01 - 2020-10-31 | Role: PI
Research Interests
T-Lymphocyte Subsets
T-Lymphocytes
Suppressor-Effector
Autoimmunity
Islets of Langerhans Transplantation
Transplantation Immunology
Transplantation Tolerance
Immune Tolerance
Immunotherapy
Research Pathways
Publications
MOST RECENT PUBLICATIONS FROM A TOTAL OF 123
- Stem Cell Therapies for Treating Diabetes: Progress and Remaining Challenges.| | PubMed
- Suppressed calcineurin-dependent gene expression identifies lung allograft recipients at increased risk of infection.| | PubMed
- Revealing the specificity of regulatory T cells in murine autoimmune diabetes.| | PubMed
- Alloreactive fetal T cells promote uterine contractility in preterm labor via IFN-γ and TNF-α.| | PubMed
- Minimum Information about T Regulatory Cells: A Step toward Reproducibility and Standardization.| | PubMed
- Mitigating Ischemic Injury of Stem Cell-Derived Insulin-Producing Cells after Transplant.| | PubMed
- Nanoporous Immunoprotective Device for Stem-Cell-Derived β-Cell Replacement Therapy.| | PubMed
- Transplant trials with Tregs: perils and promises.| | PubMed
- Cutting Edge: Origins, Recruitment, and Regulation of CD11c+ Cells in Inflamed Islets of Autoimmune Diabetes Mice.| | PubMed
- Glucose-Stimulated Insulin Response of Silicon Nanopore-Immunoprotected Islets under Convective Transport.| | PubMed